A C18 sextant named J. Watkins

17 09 2018

Previous posts in this category include: “An Old Wooden Quadrant Restored”, ” A turn-of-the-century French sextant”, “A Half-size Sextant by Lefebvre-Poulin”, ” A Fine Sextant by Spencer, Browning and Co”,  “A C19 Sextant Restoration” , “Making a Keystone Sextant Case” , “Restoring a C. Plath Drei Kreis Sextant” , “Heath Curve-bar sextant compared with Plath” , “A Drowned Husun Three Circle Sextant”, ”Troughton and Simms Surveying Sextant” , “A Sextant 210 Years On” , “A fine sextant by Filotecnica Salmoiraghi”, “A British Admiralty Vernier Sextant”, “An Hungarian Sextant via Bulgaria” ,  “A Half-size Sextant by Hughes and Son” and “A Fine C Plath Vernier Sextant”, “Heath and Co’s Best Vernier Sextant.” and “An Early C19 Ebony Quadrant Restored”.

A few months ago I acquired an old sextant for a very modest price, as it was without telescopes or case. Restoration was straight forward, as all the parts were present. It was only necessary to clean and re-lacquer  parts and polish screw heads and then find a new home for the instrument. Figures 1 and 2 show the general arrangement of the restored sextant from the front and back, and I have labelled the main parts for those who have not yet had the wisdom to buy “The Nautical Sextant”.

Figure 1: The sextant and its parts.


GA rear better

Figure 2: Rear view of sextant.

I show the naked frame in Figure 3. It is slender by modern standards, but seems to be rigid enough for its purpose.

Frame bare

Figure 3: The naked frame restored.

I believe that this is a relatively early sextant, based not only on the name engraved on the limb but on several other factors. To take the name first, it is “J Watkins Charing Cross London”.  This must refer to Jeremiah Watkins who succeeded his uncle, Francis Watkins (1758 – 1810) in 1784 at the age of about 26 years. I have been able to find only one other sextant with J Watkins’ name on it (sold in London in 2014) and I suspect that he was the retailer rather than the maker. It was common practice for sextants, chronometers, clocks and the like to be sold un-named, for the retailer to add his name. The main activity of Watkins senior and junior, and later Watkins and Hill, was in making telescopes with achromatic lenses.


Figure 4: The name.

Looking closely at the name (Figure 4a ), the second “s” in “Charing Cross” is the old English long s, with a nub on the left of the descender. This form of s  had fallen into disuse in printing by 1800 and its use here suggests the engraver had trained well before 1800.

Long s

Figure 4a.

The brass limb was attached to the hard bronze frame by countersunk screws whose heads were then filed off flush, and the ghost of one of these screw heads can be seen above the “n” of Charing Cross. Rather unusually, the divisions are made directly into the brass rather than into a band of silver let into the brass, a practice established well before 1800. The usual explanation for this practice is that brass of the time contained hard spots which could have diverted the scriber of the dividing engine from its true path and that lines on brass tended to be ragged. However, this may have applied only to English brass, as makers preferred if they could to import high quality “Dutch” brass from near Aachen in Germany.

Scale divisions

Figure 5: Magnified view of scale divisions.

A close up view of the divisions (Figure 5) shows them to be perfectly regular, so that the scale was, I am sure,  machine divided. Jesse Ramsden’s first dividing engine was finished in about 1766 . It surpassed all previous attempts at accurate machine division, but he was not satisfied with it, and completed an improved version in June 1774. Around about this time he produced a sextant shown in Figure 6, with a frame very similar, if not identical to my Watkins’. By 1789 there were three dividing engines in London, By Jesse Ramsden, John Troughton and John Stancliffe, and by 1808 there were perhaps a dozen.

Copy of Ramsden sextant

Figure 6: Sextant by Jesse Ramsden.

This suggests to me that the two sextant frames had a common source in a specialist foundry and we know that Ramsden used specialist  founders when he needed castings. The finish is very regular and there is no signs that it was sand cast. More likely is that it was cast in bell metal (a bronze high in tin) by the lost wax method.

The radius of the arc is nine inches (229 mm) and by 1800, because it had by then become possible to divide small radii more accurately, the more usual radius was around six and a half inches (165 mm). Thus, these several features lead me to suppose that the sextant was made some time after 1774 and before 1800.

The telescope ring and rising piece are of a form that remained common well into the twentieth century. The telescope is held in a ring that can be adjusted so that the axis of the telescope is parallel to the frame, while the whole can be raised or lowered on its square rising piece by means of an internal captive screw and knurled knob (Figure 7).

Telescope rising

Figure 7: Telescope ring.

Compared to later sextants the index mirror is unusual in that there is no provision made for adjusting it to be at right angles to the plane of the arc. In some sextants of this era, of the three large screws seen in Figure 8, only the two outer ones attached the bracket to the index arm, while the central screw was threaded into the bracket and its tip bore on the face of the index arm, so that it was possible to rock the bracket a little to adjust it. In this sextant, the bracket was simply made square in the first place.

Index rear

Figure 8: Index mirror bracket.

Figure 9 shows the front of the bracket and two of the three nubs or nipples on its face, against which the mirror was held by a clip with three tongues opposite the nubs. When the small central screw seen in Figure 8 is tightened, the mirror is held strain-free to the bracket by the clip.

Index structure

Figure 9: Index mirror clip and bracket.

The index arm bearing is shown in Figure 10.  It is of the form used by almost every maker until late in the twentieth century. The index mirror is attached to a disc to the underside of which is attached a tapered journal which runs in a corresponding hole in the index arm bearing. The fit is adjusted by means of an axial screw via a washer.  The washer has a square hole in it that fits over a square on the end of the journal. This prevents turning forces from being applied to the screw and loosening or tightening it.

In this sextant, the whole is enclosed in a cover, which also doubles as one of the feet of the instrument. Many makers copied this practice, though in the twentieth century, when two World Wars required quantity production, it was often omitted.


Figure 10:  Index arm bearing.

The method of adjusting the position of the index arm is shown in Figure 11 and is typical of the practice used in practically all vernier sextants until the last were produced in the late 1930s. A block is able to slide in a guide fabricated on the rear of the index arm expansion and the block carries a bronze nut, which sometimes has an adjustable split in it to ensure a close fit upon the tangent screw. Running in the nut is the steel tangent screw, held captive in its bearing which is attached to the index arm. Rotating the screw can move the block in its slide, but in practice, once the position of the arm has been roughly set by sliding the index arm by hand, the clamp screw clamps the sliding block to the limb of the sextant. Then, when the screw is turned, it is the index arm that slides on the block.

Tangent screw

Figure 11: Tangent screw.

Figures 12 and 13 show the methods for adjusting the horizon mirror. The mirror bracket sits atop two circular tables. The top one may be tilted against a concealed spring using the adjusting screw, shown in Figure 13, to correct for side error.

Index adjust front

Figure 12: Horizon mirror adjustment, side view.

The bottom circular table may be rotated through a small angle to correct for index error, using two capstan headed screws that lock against each other. The screws bear on a tongue which is an extension of the frame and the table rotates about an axis which passes through the frame and is secured by the large screw underneath.

Index adjust rear

Figure 13: Horizon mirror adjustment, rear view.

This rather complex arrangement is used on several sextants of this era. The sextant described in my post of 10 November 2009 shows an identical system, while another , shown in the post of 10 June, 2010, has a different though equally complex system. Before long, the much simpler method came in, of screws bearing against the back of the mirror with springs opposing the movement against the front of the mirror. However, some makers persisted with unreasonably complex systems of adjusting the horizon mirror well in to the twentieth century. Brandis was one late C19 maker whose system was copied for the US Navy Mark II sextant of the 1940’s and I have illustrated it in Figure 9 of my post of 30 November 2010.

Like many sextants that I can afford to buy, this instrument lacked a case. For the last nine years, I had been hoarding a case that had housed a pillar sextant. Usually, sextant cases are of mahogany, not brass-bound rosewood, indeed, this is the only example I have ever seen for a proper sextant, rather than the decorative so-called  reproduction ones from the Indian sub-continent. Figure 14 shows how I have adapted the case for my Watkins sextant. Originally, it would probably have lived in a keystone case, which are difficult to make  and difficult to carry. I had two contemporary telescopes saved against the day when I would acquire an antique sextant without any and had only to do a little screw-cutting on the lathe for them to fit in the telescope ring.

Case 002

Figure 14: Sextant in new home.

This completes my one hundred and third blog post on sextants and, while I have material for two more, I will then have run out of subjects. I am open to suggestions  about further subjects. If you have a particularly interesting sextant I would be happy to consider a guest post, though I would reserve the right to edit it if necessary. If you are interested in things navigational, don’t forget to have a look at my other site: http://www.chronometerbook.com


An Old Wooden Quadrant Restored

13 06 2018

Previous posts in this category include: ” A turn-of-the-century French sextant”, “A Half-size Sextant by Lefebvre-Poulin”, ” A Fine Sextant by Spencer, Browning and Co”,  “A C19 Sextant Restoration” , “Making a Keystone Sextant Case” , “Restoring a C. Plath Drei Kreis Sextant” , “Heath Curve-bar sextant compared with Plath” , “A Drowned Husun Three Circle Sextant”, ”Troughton and Simms Surveying Sextant” , “A Sextant 210 Years On” , “A fine sextant by Filotecnica Salmoiraghi”, “A British Admiralty Vernier Sextant”, “An Hungarian Sextant via Bulgaria” ,  “A Half-size Sextant by Hughes and Son” and “A Fine C Plath Vernier Sextant”, “Heath and Co’s Best Vernier Sextant.” and “An Early C19 Ebony Quadrant Restored”.

A month or two ago, I acquired an ancient ebony-framed quadrant in a sorry state, with several important parts missing. Figure 1 shows the front view of the instrument as received and Figure 2 shows the back.

1 GA as found

Figure 1 : Front, as found.

2 GA rear as found

Figure 2 : Rear as found.

The pictures show clearly what was missing and damaged so I will not list them here, but instead digress to try to estimate the date of the instrument. Many ebony-framed octants were made and were often called “Hadley’s quadrant” or simply “a Hadley”. Most of them bear no maker’s name, though some of them, if divided by Ramsden, will bear evidence of this on the main scale. Hand-divided quadrants were of a large radius, 15 inches (380 mm) or more. The improvements due to Ramsden-type dividing engines allowed the radius to be reduced with no loss of accuracy, and most nineteenth century wooden instruments had a radius of about 9 inches (230 mm). The size of my new example lies somewhere between, at about 11½ inches (290 mm).  Early illustrations of quadrants in use often show it being held by the frame, as no handle was provided, and the absence of a handle or any trace of one ever having been present, leads me to believe that this quadrant is relatively early, but after the advent of machine dividing in around 1767 (the description of Ramsden’s second engine was published in 1777 but his first engine dates to perhaps ten years before this).

Two further archaic features are the presence of a back sight pinhole or pinule and the design of the mirror brackets. I will borrow the words of W E May in his “A History of Marine Navigation” (1973, ISBN 0 85429 143 1) to explain the back sight: By altering the angle of the horizon glass and moving the eyepiece to a position close to it on the same radius, the octant could be used  for what was called a ‘back observation’, when the horizon opposite to the object instead of below it was used. The angle measure was then the complement of the altitude….It is extremely doubtful whether the back observation was ever used in practice.”  The light rays reaching the secondary mirror and pinule from the index mirror pass through the clear part of the normal horizon glass before being reflected into the eye by the secondary mirror, while the horizon is viewed through a slot in the silvering of the latter (Figure 3).

16 Secondary mirror

Figure 3 : Mirror and pinule for back sight.

Although the index mirror bracket was absent, the other two mirror brackets allowed me to study the design. Two screws pass through threaded holes in the back of the bracket and bear upon the back of the upright of an angle bracket. The vertical edges of the bracket are folded over so that when the screws are tightened, they draw the mirror back against vertical ridges on the front of the upright.  Figure 4 shows the edges of the new index mirror bracket being folded over a steel pattern.

3 Folding index bracket

Figure 4: Edges of new index mirror bracket being formed.

If the ridges on the upright do not lie in the same plane, the mirror glass will be distorted and Peter Dollond pointed this out to Nevil Maskelyne, the Astronomer Royal, in a letter of February, 1772. Among other matters, he described the now modern practice of sitting the mirror against three points and with springs or lugs on the front of the bracket bearing on the mirror opposite these points. Figure 5 shows this practice had been adopted in a sextant made in about 1790.

3b Index mirror bracket 002

Figure 5 : Peter Dollond’s method of securing mirror.

Thus, I tentatively date the quadrant as being after 1767, but not much later, as Dollond’s method of securing mirrors seems to have been rapidly adopted.

To return to the construction of the new index mirror bracket, after folding the sides and forming the retaining folds on the edges of their front I soldered the top to the sides. Figure 6 shows this being done, with a weight used to hold everything in place while the solder froze.

5 solder bracket roof

Figure 6 : Soldering top of index bracket to back and sides.

The holes for the fixing screws can be seen and after filing the top to its final shape, I riveted two threaded bushes in place. Figure 7 shows an exploded view of the completed bracket with its angle plate, while Figure 8 shows the completed bracket and mirror in place.

6 bracket complete

Figure 7 : Index mirror and bracket, exploded view

3a Index mirror bracket 001

Figure 8 : Completed Index mirror bracket.

The next part to receive my attention was the pinules or pin hole sights. Actually, the holes are about 2 mm in diameter, rather larger than your usual pin…
All that remained to guide me was the base of one of them, so I laboriously cut out two discs of 3 mm brass sheet, filed them to shape and married one of them to the existing base by cutting a slot in it, applying solder and smoothing to shape with a file (Figure 9). I copied the base for the other sight. The standard sight has two holes in in, one in line with the silvered edge of the horizon glass and the other a few mm higher, so as to admit more light from the horizon to the eye when there is poor contrast between the sea and the sky. Even small increases in light intensity give worthwhile increases in contrast. I also fashioned a little cover (visible in Fig 11) that can be swung into place to cover one or other of the holes. The back sight has only one hole, aligned with the slot in the silvering of its mirror.

7 Pinule repair

Figure 9 : Pin hole sight repair.

If you compare Figure 3 with Figure 10, you will see that in the latter , there is a defect in the wood of the frame. I made this good with car body filler, stained black with grouting stain, and then sanded to shape and smoothness, followed by a few coats of French polish until it matched the finish of the surrounding wood.

4 frame damage

Figure 9 : Damaged frame (see also Fig 3)

The missing horizon shade glass was replaced by a disc of ruby red glass, which I cut out with a trephine. If you look carefully at Figure 1, you will see a rectangular slot just below the base of the horizon shade on the photograph. This is also visible on the back, and there is a further slot higher up which is occupied by the base of the horizon shades, so that the latter can be, as it were, unplugged and transferred to the lower slot, to provide shades when using the back sight.

Apart from a general clean-up and fitting a piece of Ivorine for the name plate, that completed repairs to the front. The most important item missing from the back was the washer and screw that secures the index arm bearing journal to the frame. Unfortunately, the screw had broken off and I had to drill it out and re-tap for a slightly larger size, but the washer presented no problems. The square hole in the washer has to fit closely over the square on the end of the bearing, as any tendency for it to turn might tend to loosen or tighten the screw and affect the adjustment of the tapered bearing.

It was a relatively simple matter to copy one of the legs and to make sundry new washers and screws. Two thumb screws lock the adjustments to the index and back sight mirrors and it was not too difficult to copy the remaining one. Happily, the threads seemed to be threads for which I have long-obsolete taps and dies, so I did not have to resort to the lathe to cut them. I have covered some of the details of the structure and adjustment of these parts here: https://sextantbook.com/?s=crichton

12 Details of new parts, back

Figure 10 : Details of replacement parts on back.

A piece of clock main spring, after some persuasion, provided the replacement for the broken spring that holds the index arm against the frame, leaving only a small piece of Ivorine to be let in, to replace the missing note pad.

On completely dismantling the instrument to clean the frame, I found a couple of minor cracks in the wood, which were easily closed up after infiltrating some glue with a fine blade and clamping. I cleaned the frame with a mild detergent and then gave it a coating of good quality furniture wax. Most of the brass parts would not have been left bright, so they received a coat of black lacquer. Figure 11 and 12 show the finished article.

14 Repairs complete front

Figure 11 : Front with finished parts before painting.

13 Repairs complete, rear

Figure 12: Rear before painting of replacement parts

The scales were in good condition apart from an incrustation of dirt which was easily cleaned with a little alcohol on a rag. Close inspection showed the ghost of some emblem, scarcely visible to the naked eye, between 45° and 50° (Figure 13).

15 Fouled anchor

Figure 13 : Ghost of Ramsden?

After careful cleaning with a fine point and playing with the lighting, a fouled anchor emerged under magnification, but, while this was an emblem used by Ramsden on ivory scales which he divided for others, and there are other pointers to its date, it seems to me to be too crudely drawn, compared to the rest of the scale. Perhaps it was intended to deceive a buyer at some point in its long life.

The quadrant came to me without a home and I thought it deserved a case in keeping with its antiquity. They were at first “keystone” cases, but by the mid nineteenth century they had been replaced by square cases, partly because of the complication of making the bow front and partly because they are very awkward to carry. It is also more difficult to cut dovetail joints on an angle. However, I had succeeded twice before in making acceptable keystone cases so I set about making another one.

No doubt, in the seventeenth century, bending wood to shape was a commonplace task, as boats, ships and barrels, to name but a few, all needed their parts to be steamed and bent to shape. However, nowadays, it is possible to cut thin planks and we have glues that are strong, durable and waterproof, so I chose to laminate the front. Figure 14 shows three 3 mm laminae held in place in a mould while the glue dries.

9 Laminating case front

Figure 14 ; Gluing up the laminae.

Cutting the dovetail joints proved to be no more than ordinarily difficult. The most difficult part was to cut the case into lid and base, once the top and bottom planks had been glued on. The saw always seems determined to wander, so that careful planing is afterwards needed to ensure a nice fit of the lid and hinges. Figure 15 shows the finished case and Figure 16 shows the completed quadrant in its new home.

11 Case side

Figure 15 : Finished case exterior.


Figure 16 : Completed instrument in its new home

Museologists seem to be reluctant to do anything other than clean objects that they receive and I was told by one that if I did anything else I would receive a metaphorical slap on the wrist. My own view is that if we know for sure what the intact object looked like and that it is not excessively rare and valuable, to show it in, say, the state as in Figure 1 and 2, is less likely to educate a viewer that if it were restored. A compromise might be to leave the new and restored parts obvious by, for example leaving them as bare metal or wood. If you have got this far, I should be interested to read your views.

Let me know if you would like enlargement of any of the photos, and don’t forget to buy my books.




A turn-of-the-century French Sextant

11 08 2015

Previous posts in this category include: “A Half-size Sextant by Lefebvre-Poulin”, ” A Fine Sextant by Spencer, Browning and Co”,  “A C19 Sextant Restoration” , “Making a Keystone Sextant Case” , “Restoring a C. Plath Drei Kreis Sextant” , “Heath Curve-bar sextant compared with Plath” , “A Drowned Husun Three Circle Sextant”, ”Troughton and Simms Surveying Sextant” , “A Sextant 210 Years On” , “A fine sextant by Filotecnica Salmoiraghi”, “A British Admiralty Vernier Sextant”, “An Hungarian Sextant via Bulgaria” ,  “A Half-size Sextant by Hughes and Son” and “A Fine C Plath Vernier Sextant”, “Heath and Co’s Best Vernier Sextant.” and “An Early C19 Ebony Quadrant Restored”.

Figures may be enlarged by right clicking on them. Return to the text by using the back arrow.

A rather dusty and neglected little French sextant came into my hands a few weeks ago. The kinship of French sextants is quite difficult to sort out. This one bore a label in which the name of A Hurlimann is given prominence and the names of his successors, Ponthus and Therode, are given less prominence (Figure 1). The limb is engraved in copperplate Lorieux, A Hurlimann, succr (successor) à Paris.

Figure 1 : Label in lid of case.

Figure 1 : Label in lid of case.

A. Hurlimann succeeded a distinguished line of French instrument makers. Two pupils of the renowned Henri Gambey founded a firm in 1845. Possibly both originally named Schwartz (Black), they were known as Lenoir (Black) and Lorieux, and managed by Lorieux and then Hurlimann. In 1900 they were succeeded by Ponthus and Therode. At the turn of the century in about 1902 the firm moved from 43, Passage Dauphine, Paris, to 6 rue Victor Considerant. It was then taken over by Albert Lepetit , possibly in 1914, and moved to Montrouge at 204 avenue Marx Dormoy, eventually passing into the hands of Roger Poulin in about 1950. Thus, I surmise that the sextant dates from between 1902 and 1914.

Figure 2 shows the instrument in its case as received. There is a large shrinkage crack in the lid and floor. Not clearly visible are a Keplerian telescope of about 6 power in a pocket at the front of the case and a screwdriver at the back. The label in the lid counsels against using alcohol to clean the instrument, suggesting that it is painted with a shellac-based lacquer (which dissolves in alcohol).

Figure 2: Sextant as received.

Figure 2: Sextant as received.

The frame is a bronze casting with inlaid silver arc, beautifully finished and otherwise unremarkable except for its relatively small radius for the time, of only 142 mm.  The arc is divided to 20 minutes and the vernier reads to a realistic 30 seconds. The divisions are crisp and the numerals are hand engraved in italics. A more usual radius for vernier sextants is about 180 mm and many of these instruments have verniers divided to 10 seconds, though it is usually quite impossible in these cases to say with certainty which pair of lines coincide.

There are two main areas of interest in the design: a) the mirror adjustments are complicated, compared to what we may think of as the modern method of springs on the front of the mirrors opposing the action of screws behind the mirror (in fact this dates from the 18th century and was invented by John Dolland); and b) the mode of mounting of the tangent screw, which seems to have had a German influence, as it is also seen in vernier sextants made by Frederick Ernest Brandis, a German immigrant to the New York in 1858.

The index mirror is held against the upright of a bracket by means of a clamp whose clamping screw bears against the back of the upright as shown in Figure 3 and Figure 4.

Figure 3: Front of index mirror clamp.

Figure 3: Front of index mirror clamp.

Figure 4: Index mirror in place.

Figure 4: Index mirror in place.

The mirror is adjusted for perpendicularity by rocking the whole bracket on the two radiused front feet by means of an adjusting  screw held captive in the horizontal part of the bracket and engaging with a threaded hole in the top of the index arm (Figure 5). The screw can be locked by tightening the screws that pass through the brass clamp bar that holds the screw captive. An earlier (and simpler) method was to have the hole in the foot tapped for a screw, the end of which simply bore on the face of the index arm, though there was a tendency for the thread to strip in clumsy hands.


Figure 5: Index mirror bracket with screw in place.

The horizon mirror adjustment system is even more complex. A large cylindrical boss on the underside of the bracket (Figure 6) passes through a hole in the sextant frame and is secured by a large brass locking screw and washer (Figure 7). A screw held captive in the frame enters the threaded hole in the tongue and rotates the mirror to correct for index error (Figure 8). This movement is locked by means of the knurled clamp screw behind the frame, seen in Figures 7 and  8.

Figure 7: Horizon mirror bracket and clamp.

Figure 6: Horizon mirror bracket and clamp.

Figure 8: Horizon mirror locking screws.

Figure 7: Horizon mirror locking screws.

Side error is taken care of by a similar captive screw that opens or closes the slot in the base of the bracket, as seen in Figure 6 and 8. These adjustments are easy to use and effective, but are at the expense of a good deal of complication.

Figure 9: General view of horizon mirror adjustments.

Figure 8: General view of horizon mirror adjustments.

The telescope mounting again achieves a good result at the expense of complexity (Figure 9). The rising piece is triangular in  section and is close-fitting in a triangular hole in a bracket that passes through a hole in the telescope frame and which is secured by a large knurled nut. A countersunk screw passes through the frame into the bracket to secure it against rotation. A large knurled adjusting thumb screw is held captive in the bracket and its thread passes up the middle of the rising piece to make it rise or fall.

Figure 9:mounting of telescope rising piece.

Figure 9: Mounting of telescope rising piece.

Figure 10 shows the mounting exploded.

Figure 10: Exploded view of telescope mounting.

Figure 10: Exploded view of telescope mounting.

The tangent screw  follows F E Brandis’ practice quite closely (or vice-versa). It has a knurled knob on each end and runs in a spherical bearing at the front end. The threaded part passes through a spherical nut which is held captive in the sliding block by a cap and prevented from rotating by the slender boss on its underside, that passes into a hole in the spherical seat on the face of the sliding block (Figure 11).

Figure 11: General view of tangent screw mechanism.

Figure 11: General view of tangent screw mechanism.

Figure 11 shows the tangent screw bearing exploded and it can also be seen that the nut cap is a similar device to the bearing cap.

Figure 12: Tangent screw bearing.

Figure 12: Tangent screw bearing.

The sliding block is held in the rectangular window cut into the expanded part of the index arm by a leaf spring and a clamp spring. When the clamp is tightened, the block can no longer slide over the limb, so that when the tangent screw is rotated it is the index arm that moves. Thus, although I have named the part the sliding block (since no one else seems to have troubled to give it a name) in truth it is the index arm expansion that does the sliding.

Figure 13: Underside of sliding block

Figure 13: Underside of sliding block and clamp.

The shades mountings are unremarkable in design (see Figure 7) except that they have no provision for isolating the movement of one shade from the next by means of, for example, keyed separating washers. Friction is provided by Belleville washers, patented in 1867 by Julien Belleville, a Frenchman.

The telescope kit comprises the usual “zero magnification” sighting tube, a 3 x 26 mm Galilean “star” and a 6 x 15 Keplerian or “inverting” telescope (Figure 14), supplemented by two eyepiece shades of more or less equal density though of slightly different colours (neutral and deep orange).

Figure 14: Sighting devices.

Figure 14: Sighting devices.

The case (Figure 15) is of a light coloured wood with a grain similar to that of mahogany, with dovetailed corners, and both top and bottom were glued and nailed on with steel pins. I find it strange that a few francs were saved by using steel instead of brass pins or, better, brass screws, given that the whole instrument probably cost several months salary for a merchant officer of the time. On the other hand, the brass handle seems on the heavy side for the neat little case into which all the parts fit snugly, perhaps too snugly, and the instrument is held in a pair of felt-lined pockets by a pillar in the lid which passes through the frame and sits on the sextant handle (Figure 2, above). The latter is of the traditional pear shape. The hinges and hooks are of brass and there is a brass lock with ebony escutcheon.

Figure 14: Case exterior.

Figure 15: Case exterior.

It was possible to remove both top and bottom for re-gluing and the crack in the bottom was simply closed up, leaving a minor cosmetic deficit at the back of the case. The crack in the top was much wider and I dealt with it after re-gluing and nailing by filling it with epoxy cement and adding a layer of coloured filler above and below. It was not possible to save the label with its cleaning advice and I replaced it by a modern one using a matching typeface and lay out. Figure 16 shows the final result of the restoration of sextant and case.

Figure 17: Restored instrument in its case.

Figure 16: Restored instrument and case.

Post script: Come to think of it, the card pasted inside the lid, suggests a time of sale after 1902, but the inscription on the limb of the sextant itself suggests that it was made before the Pontus and Therode take-over.

A Half-size Sextant by Lefebvre-Poulin

29 06 2014

Previous posts in this category include:  ” A Fine Sextant by Spencer, Browning and Co”,  “A C19 Sextant Restoration” , “Making a Keystone Sextant Case” , “Restoring a C. Plath Drei Kreis Sextant” , “Heath Curve-bar sextant compared with Plath” , “A Drowned Husun Three Circle Sextant”, ”Troughton and Simms Surveying Sextant” , “A Sextant 210 Years On” , “A fine sextant by Filotecnica Salmoiraghi”, “A British Admiralty Vernier Sextant”, “An Hungarian Sextant via Bulgaria” ,  “A Half-size Sextant by Hughes and Son” and “A Fine C Plath Vernier Sextant”, “Heath and Co’s Best Vernier Sextant.” and “An Early C19 Ebony Quadrant Restored”.

A few months ago, I acquired an unusual little sextant, but was only recently able to collect it in Europe and bring it home to New Zealand for cleaning and overhaul. According to the seller, it had been found in the attic of a merchant seaman who had been active in the 1950’s, but there was no other information about its origins. It bears the name “Lefebvre-Poulin, Montrouge, but the naming of French sextants is rather confusing. Poulin made sextants in the second half of the 20th century in Montrouge in the south-west suburbs of Paris, but Jules Lefbvre was active in central Paris in the latter half of the nineteenth century, so it is unlikely that there was an association between the two makers, and the name of Poulin is sometimes associated with Blanchet.

Apart from its small size, there are one or two other unusual features such as its handle and its micrometer drum, which spans two degrees. Figure 1 shows a front view of the un-restored instrument and Figure 2 gives a rear view. You can get a magnified view of all figures by clicking on them. Return to normal by using the back arrow.


Figure 1: General arrangement, front view.

Figure 1: General arrangement, front view.

Figure 2: General arrangement, rear view.

Figure 2: General arrangement, rear view.

To help readers who have not yet had the wisdom to buy my book, “The Nautical Sextant“, in Figure 3 I show the restored sextant with its main parts labelled.

Figure 3: Main parts of the sextant.

Figure 3: Main parts of the sextant.

At the heart of any sextant is the frame and its bearing for the index arm. In this case, the frame is of an aluminium alloy with a cast-in bronze rack for the micrometer and a bronze bearing for the index arm. The latter also serves as a point of attachment for the unusual handle (Figure 4).

Figure 4: To show handle.

Figure 4: To show handle.

The hexagonal alloy handle screws over the index arm bearing (Figure 5) and is locked in place by two Allen grub screws. The bearing itself is attached to the frame by three brass screws.

Figure 5: Index arm bearing, and handle attachment.

Figure 5: Index arm bearing, and handle attachment.

The vast majority of sextants ever made had tapered index arm bearings, but as micro-finishing of plain parallel bearings advanced in the second half of the twentieth century, C Plath and Observator made use of the new technology in their sextants. As Figure 6 shows, Poulin followed suit in this sextant. The parallel steel journal rotates in the bronze bearing (strictly speaking, the bearing is the enclosure in which the shaft or journal rotates), and is secured against axial movement with a phosphor-bronze spring washer and a brass screw. No provision is made for adjustment as no wear is to be expected in the slow-moving, lightly-loaded bearing.

Figure 6: Exploded index arm bearing.

Figure 6: Exploded index arm bearing.

Figure 7 shows the rack with a view of the micrometer mechanism. The bronze rack appears to be cast in to the frame and its pitch is relatively large for its radius of about 80 mm, so that one turn of the micrometer worm advances the sextant reading through two degrees. Henry Hughes and Son in their WWII half-size seaplane sextant reduced the pitch of the rack  so that they could use most of the components of the full-sized micrometer mechanism, needing to modify only the pitch of the worm to match the rack. Their micrometer advances the sextant reading through one degrees per rotation of the worm (see my post of 26 September 2011).

Figure 7: To show the rack.

Figure 7: To show the rack.

The micrometer mechanism is of conventional design (Figure 8). The lower end of the index arm carries a post for the bearing of a swing-arm chassis to which the plain parallel bearing of the micrometer worm shaft are attached. A large leaf spring (radial preload spring) holds the worm in contact with the rack and a simple cam allows the worm to be swung in the plane of the frame out of contact with the rack against the spring pressure. This allows the index arm to be moved rapidly into position before releasing the catch to re-engage the worm for final adjustment. A smaller leaf spring (axial preload spring) bears on the end of the worm shaft to take up any axial play in the bearings. Also shown in the figure are the two keepers, which prevent the index arm from lifting away from the front of the frame.

Figure 8: Micrometer mechanism.

Figure 8: Micrometer mechanism.

Since one rotation of the worm with its attached micrometer drum advances the reading through 2 degrees, the drum is divided 0 to 60 minutes twice with subdivision to minutes (Figure 9). The main scale on the limb and the micrometer drum are divided to single degrees and minutes respectively, with alternate tick marks being long (Figure 10). At first sight, this gives the impression that half-degrees and minutes are being shown and it might have been easier to read had the normal practice been followed of making the 5  tick mark longer than the others.

Figure 9: Micrometer drum divisions.

Figure 9: Micrometer drum divisions.

Figure 10: Main scale close-up view.

Figure 10: Main scale close-up view.

The shades are unremarkable except that there are only two index shades instead of the more usual three or four and one horizon shade instead of two or three. No provision is made to prevent the index shades rotating together, but as there are only two of them this does not pose much of a problem. The two shades together give adequate reduction for viewing full sun and the single horizon shade also gives adequate reduction of glare beneath the sun.

The mirrors and their brackets are conventional. The horizon mirror is fully silvered, but there is adequate overlap of the direct and reflected images when viewed through the 4 x 25 mm Galilean telescope; though the field of view is somewhat restricted, I found no difficulty in finding the sun, though with star sights the story might be very different.

I have not been able to discover for whom this instrument was intended. Its small size and simplicity suggests it might have been aimed at yachtsmen, for whom storage space may be at a premium. It may also have found the occasional sale among surveyors and explorers. A merchant marine officer is unlikely to have wished to be seen using anything other than a full-sized instrument. It came to me without a case. Monsieur Hervé Le Bot has kindly provided me with a photograph of the case interior, which is shown in Figure 11. Unusually, the sextant is stowed in its case upright, in a socket which accepts the hexagonal handle and which has cheeks to prevent it from rotating.

Figure 11: Interior of case (courtesy of M. H Le Bot)

Figure 11: Interior of case (courtesy of M. H Le Bot)




A Fine Sextant from Spencer, Browning and Co.

23 01 2014

Previous posts in this category include:  “A C19 Sextant Restoration” , “Making a Keystone Sextant Case” , “Restoring a C. Plath Drei Kreis Sextant” , “Heath Curve-bar sextant compared with Plath” , “A Drowned Husun Three Circle Sextant”, ”Troughton and Simms Surveying Sextant” , “A Sextant 210 Years On” , “A fine sextant by Filotecnica Salmoiraghi”, “A British Admiralty Vernier Sextant”, “An Hungarian Sextant via Bulgaria” ,  “A Half-size Sextant by Hughes and Son” and “A Fine C Plath Vernier Sextant”, “Heath and Co’s Best Vernier Sextant.” and “An Early C19 Ebony Quadrant Restored”.

Recently, I was made the guardian of an exceptional nineteenth century sextant made by Spencer, Browning and Co. The owner, whose father had bought it in an antique shop fifty years previously, did not wish to see it on e-bay, and I am flattered that he took the trouble to send it half-way around the world to me for me to look after.

The firm of Spenser, Browning and Co. has a long history going back even further than Richard Rust, who was apprenticed  to his master, possibly a John Rust, for a term of seven years. Rust in turn was apprentice-master to William Spencer, who joined him at the age of about fifteen in 1766, to Samuel Browning in 1768, and to Ebenezer Rust in 1770. Ebenezer was probably Richard Rust’s nephew. Spencer and Browning formed a partnership in 1778 which lasted to 1781 and in 1784 the partnership was reformed by the inclusion of Ebenezer Rust. The members of the partnership were described as “grocers”, which at that time meant “a trader in gross quantities” and included such trades as mathematical instrument makers. Originally trading from 327 Wapping High Street in London, they later moved to 66 Wapping High Street, a site now occupied by modern apartments.

Sam Browning married Spencer’s sister, Catherine, and their sons Richard, William and Samuel were in turn apprenticed to their father. William Spencer and his wife Anne had no children, but their nephews Samuel, John, Anthony and William Spencer were apprenticed to their uncle William. Ebenezer Rust’s son, also Ebenezer, was apprenticed to his father in 1795. With so many family members involved we may surmise that the firm of Spencer Browning and Rust was very successful, as witness to which is the relatively large number of their instruments that survive in museums and collections. Of the original partners, Ebenezer Rust died in 1800, William Spencer in 1810 and Samuel Browning in 1819. Upon the death of the younger Ebenezer in 1838, the firm became Spencer, Browning and Co., which continued to trade until 1870.

Figure 1: Restored sextant and case.

Figure 1: Restored sextant and case.

Thus, the instrument, shown restored in Figure 1, can be placed between 1838 and 1870. Its keystone case, I would suggest, places it in the earlier part of this period, although one with a similar serial number in a collection is provided with the more convenient rectangular case. What is clear is that the sextant, readable to 135 degrees, is a high-end instrument. Immediately obvious (Figure 1) is the handle of ivory and , inside the case, the large kit of telescopes. (You can enlarge all the figures by clicking on them. Return to the text by using the back arrow)

Less obvious is the arc of gold inlaid into a limb of silver (Figures 2 and 3), but in case anyone might be in doubt, the words “Gold in silver” appear at the left end of the limb.

Figure 2: Face of limb and arc.

Figure 2: Face of limb and arc.

Figure 3: End view of limb and arc.

Figure 3: End view of limb and arc.

The structure of the limb follows eighteenth century practice, as one would expect of a company whose seniors trained at the end of that century and whose successors were their relatives. Usually, a limb of brass was screwed and sweated on to the face of the bronze frame  and a dovetailed segmental groove machined in it. A strip of silver would then be hammered into the groove and machined flat (See “A Sextant 210 years on”). The reason for using silver is well-known. The brass of the time was hammered and rolled into sheets and there were frequent hard spots in it which could divert the scriber of the dividing engine. Silver, by contrast, was available in  a pure and soft state.  The reason for attaching the brass limb to the bronze casting of the frame is less clear. The bronze of the day was perhaps higher in tin content than in later instruments and was sometimes described as “bell metal”, a hard and tenacious metal which would have been very difficult to machine at such a large radius on the sort of lathe likely to be available to instrument makers of the time. It is easy to forget that thee was no powered machinery and lathes had to be turned by hand or foot. It is true that large and rigid  lathes were coming into being in the first half of the nineteenth century, but these were to be found in the workshops of steam engine builders and the like. Interested readers can find more details in LTC Rolt’s book “Tools for the Job.” I surmise that attaching the softer brass limb was a means of getting around a machining difficulty.

I have occasionally seen sextants with the usual arc of silver but having a gold vernier. The combination gives improved contrast of the scales, but this is the first time I have seen one which has a gold arc too. As well as perhaps reflecting the wealth of the owner, there is a more practical reason for having a golden arc: gold does not tarnish as does silver and so never needs to be cleaned, with the attendant risk of damaging the almost impossibly fine graduations. Even if polishing does not remove the graduations altogether (and I have seen a sextant in which the arc has been reduced to unreadability for this reason), it tends to round their edges, making it more difficult than usual to read a vernier against them. Figure 4 shows how beautifully sharp the graduations remain. Also visible in this figure at the top left of the limb is the ghost of a screw head, which has been used to attach the limb, its head then being riveted into the limb and machined flush. Sextants with platinum arcs are occasionally seen. Surprising as it might seem, this was at first an economy measure, as it was cheaper than silver in the early nineteenth century, because no use could be found at the time for this relatively chemically un-reactive and difficult-to-work metal.

Figure 4: Close-up view of graduations.

Figure 4: Close-up view of graduations.

Figure 5 shows the index mirror bracket. This uses the familiar three-point bearing for the back of the mirror, and the next figure, Figure 6, shows the clip which holds the mirror to the bracket directly over the points. A screw through the centre of the back of the clip and bearing on the back of the bracket pulls the clip back on to the mirror. In 1772 Peter Dollond claimed to have invented this system. At any rate, he was granted a patent for it, though he may not have invented it, as in the eighteenth century patents were about monopoly rather than originality.

Figure 5: Index mirror bracket.

Figure 5: Index mirror bracket.

Figure 6: Index mirror clip.

Figure 6: Index mirror clip.

The shades and the horizon mirror follow a pattern that became quite standard in the first half of the twentieth century. Indeed, the horizon mirror is perhaps remarkable for the absence of the complications that characterize the adjustments of many nineteenth century instruments (Figure 7).  It has the three point mounting for the mirror with two adjusting screws to correct for side and index error, with the added refinement of screw caps to protect the screws, one of the requirements for the sextants of British naval cadets in the latter part of the century (they also had to have class A certificates from Kew Observatory).

Figure 7: Index mirror and shades.

Figure 7: Index mirror and shades.

Figure 8 shows structures in the region of the magnifier. The magnifier itself is a Ramsden compound type. It is not clear to me what purpose was served by the large surrounding disc unless perhaps to cut down glare. Many sextants have a ground-glass diffusing screen, but this one is hinged and can be folded down flat. Engineering students are (or more likely nowadays, were) taught to read a vernier scale by arranging the light to shine along the graduations, but this seems to fail with the sextant, in my hands, since the main scale always looks much darker than the vernier, sometimes to the point of unreadability. I find the scales much easier to read when the light shines across the graduations, but even so I have yet to come across a vernier divided to ten seconds in which I can definitely say which of three or four pairs of lines coincide, even using a x30 microscope with axial illumination. The best I can do is to choose the two pairs of lines which just do not coincide and to choose the middle value between them.

Figure 8: Scale magnifier.

Figure 8: Scale magnifier.

The telescope rising piece and collimation ring, both of conventional form, needed only cleaning and re-greasing, but the same was not true of the index arm. After dismantling it I found that the index arm expansion was bent and twisted, so that the vernier scale could not be brought to lie flush with the arc. This seems to be a common consequence of dropping or bumping the instrument as the cut-outs in the index arm expansion severely weaken it and little force is needed to bend it. Figure 9 shows the tapered gaps quite clearly as well as showing the state of the paintwork before restoration. Tightening of the index arm clamp only made matters worse, so I had to reassemble the clamp and carefully first correct the twist and over-correct the longitudinal bend until the feather edge of the vernier sat squarely on the arc when the clamp was tightened.

Figure 9: Bent index arm.

Figure 9: Bent index arm.

Figure 10 shows the index arm clamped, with the fault corrected.

Figure 10: Bent index arm corrected.

Figure 10: Bent index arm corrected.

The rest of the restoration consisted of the by-now-usual dismantling down to the last screw, cleaning all the parts, polishing and lacquering screw heads and other brass parts usually left bright and spraying other parts with black lacquer to reproduce as closely as possible the original finish. The case seemed to have suffered from modern central heating, which tends to dry out wood and cause it to shrink and crack where it is restrained by screws. The large shrinkage crack in the top is shown in the un-restored case in Figure 11. I decided to fill the crack with mahogany paste, but if it had been much larger, I would have been tempted to remove the top, complete the crack with a saw cut, plane the edges and glue in a strip of approximately matching wood. This process applied to the base of a sextant case will be shown in my next post.

Figure 11: Unrestored case.

Figure 11: Un-restored case.

Happily, what appeared at first sight to be worm holes in the bow front of the case turned out to be fly deposits (flies alight on surfaces after feeding and regurgitate their fluid meal, prior to sucking it up again…). The French polish on the sides was much battered and dented, and would have required major repairs, but I felt it worthwhile to strip the top and re-polish it to show off the grain of the wood. to better effect.

The interior of the case too was battered and some of the blocks for retaining the telescopes and sextant were absent, so I made this good and renewed all the felts. The original interior finish in matt black paint was in poor condition, so I repainted it as close to the old finish as possible (Figure 12). The lacquer on the telescopes and sighting tube was flaking and decayed so this too I renewed. I imagine some antique dealers might be horrified at this loss of “valuable patina”, but in my view, the instruments do not need it to be placed in their era. No one, after all, objects to antique cars being refinished, indeed they are much less valuable in a rusty and battered state.

Figure 12: Interior of case with telescopes.

Figure 12: Interior of case with telescopes.

The rule with telescope kits seems to have been that “more is better”. There is a 4 x 18 mm Galilean or “star” telescope, a 6 x 18 mm inverting telescope with an additional eyepiece giving a x 10 magnification, a zero magnification sighting tube and a 18 x 18 mm telescope with additional lenses to give an erect image. It is difficult to see what practical  the purpose the latter telescope served except perhaps to add prestige to the whole kit. The kit is completed by a single deep red eyepiece shade that screws on to any of the eye pieces. The star telescope would probably have received the most use, by day or night, while the higher magnifications would have been reserved for use with an artificial horizon on land in remote places to check the rate of the chronometers. The 6 x 18 inverting scope may have been used in calm seas for sun sights, while the sighting tube would be reserved for rough conditions and for taking angles between shore objects.

If readers have comments, or corrections, or have some question about this instrument, I am happy to receive them and to comment in turn when appropriate.

An Early C19 Ebony Quadrant Restored

11 03 2012

Previous posts in this category include:  “A C19 Sextant Restoration” , “Making a Keystone Sextant Case” , “Restoring a C. Plath Drei Kreis Sextant” , “Heath Curve-bar sextant compared with Plath” , “A Drowned Husun Three Circle Sextant”, ”Troughton and Simms Surveying Sextant” , “A Sextant 210 Years On” , “A fine sextant by Filotecnica Salmoiraghi”, “A British Admiralty Vernier Sextant”, “An Hungarian Sextant via Bulgaria” ,  “A Half-size Sextant by Hughes and Son” and “A Fine C Plath Vernier Sextant” and “Heath and Co’s Best Vernier Sextant.”

Many of the sextants in my collection began as wrecks that I have usually been able to restore without too many challenges, but after Christmas I bought an ebony quadrant or octant that had been sold “for parts or restoration” and found that I had to make many new parts in the style of 19th century instruments. It arrived as a frame and a plastic bag of screws and other bits and pieces, including a co-axial cable socket!  Had I not known that the maker was Crichton of London (Figure 1), I doubt that I would have bothered to proceed.

Captain Lecky’s advice in his famous book “Wrinkles in Practical Navigation” was to own  both an octant and a sextant. The octant was usually a wooden instrument capable of measuring up to 90 degrees with a precision of about a minute while the sextant was an altogether more expensive and finely made item with a bronze frame and an arc divided  to read  often to ten seconds (a sixth of a minute). The sextant would be used to measure angles of up to 120 degrees when, for example, making lunar distance observations, while the octant would be used for coarser observations that required no great accuracy. No doubt, there were mariners in poorly paid positions who could not afford to follow Lecky’s advice and for whom the octant was their only instrument. By the second half of the nineteenth century, lunar distance observations were becoming obsolete, displaced by the marine chronometer, so that paradoxically, as the quality and accuracy of sextants increased the need for extreme accuracy fell. However, even by the turn of the twentieth century, there were still ships that did not carry chronometers, whose navigating officers did not make lunar distance observations and whose celestial navigation might be confined to noon altitudes of the sun and pole star observations for latitude. Perhaps it was on one such ship that my battered octant found its home.

There was a James Crichton working in Glasgow who probably spent two years, from 1774 to 1776, in London, but our Crichton was John Crichton who flourished in London between 1831 and 1865 and who showed off some of his scientific instruments in the Great Exhibition of 1851. He was based in Leadenhall Street (Figure 2) which is in the centre of London and which joins Fenchurch Street, the home of the famous dynasty of instrument makers, Henry Hughes and Son.

Figure 2 : Leadenhall Street in mid C19

  Figure 3 shows the contents of the bag of bits and pieces while Figure 4 shows the frame and index arm. From left to right in Figure 3, the traditional pear-shaped handle shows a mixture of quality. The upper mounting has plainly been fabricated from turned parts, while the lower mounting is a somewhat crude sand casting in brass where little effort has been made to remove evidence of the casting flash, the casting metal that creeps between the two halves of the mould box. The index arm journal had parted company with the index arm. It was a matter of moments to resolder it to the disc that carries the index mirror bracket. The latter, together with the horizon mirror mounting, lacked the clip to hold the mirror to the bracket. Sawing out sheet brass, folding it to shape and soldering the joints took the better part of a morning. Two of the index shades were loose in their mounts and one had parted company with its mount, but it took only a few minutes to tighten them up by bending over the retaining lips, a process called swaging.

Figure 3 : Loose parts

As mentioned, the index arm and its journal had parted company, and the tangent screw mechanism had somehow migrated from the back, where it belongs, to the front (Figure 4). The bedraggled frame was in an even worse state, having lost its legs and the arc. The latter in wooden-framed instruments was sometimes made of boxwood but more commonly of ivory, which is now, for practical purposes, unobtainable except perhaps by scavenging from the keys of a wrecked piano, and even then the material may be ivorine, an early plastic related to celluloid. Obtaining something with the appearance of ivory was the subject of some experiments, but dividing the arc posed few problems to a well-equipped workshop. My account of how I produced the arc will have to be the subject of another blog post. I show the results in Figure 5 and hope that my scribing of the figures approximately matches the style of the hand-scribed name plate shown in Figure 1

Figure 4 : Frame and index arm.

Figure 5 : Detail of arc.

The clamp and its screw were missing from the tangent screw mechanism. Figure 6 shows a piece of parent brass being tried for size in the mortice of the piece that I have chosen to call the sliding block (since nobody else seems to have done so in print), and Figure 7 shows the clamps screw being checked before final turning. By this stage the clamp has acquired a strip of “well hammered” springy brass.

Figure 6 : Trying clamp for size.

Figure 7 : Clamp screw being checked.

Figure 8 shows the completed mechanism. When the clamp screw is tightened, the clamp fixes the sliding block to the limb of the octant. The threads of the tangent screw, which is held captive in a bearing attached to the back of the index arm, pass through a nut in the sliding block. When the tangent screw is rotated, the index arm moves slowly over the limb and allows fine adjustment of the position of the index arm. Thus, it is really the index arm that slides, rather than the sliding block.

Figure 8 : Tangent screw mechanism.

In a cheap instrument, time would probably not have been wasted turning legs to a tapered shape but I had made three new legs before the thought occurred to me, so the rejuvenated instrument has tapered legs. Figure 9 shows one of these being turned. At some later date, I may make new legs that are more in keeping with the class of octant. At the top left of Figure 6 can be seen holes where legs once resided. Selley’s “Steel Knead It™” is useful for filling the holes, as it dries to a black that is a fair match for ebony and can also be drilled and tapped to allow new legs to be screwed into place.

Figure 9 : Taper-turning a leg.

Figure 10 shows the front of the index mirror clip and Figure 11 the back. When the screw is tightened its tip bears on the back of the upright of the mirror bracket, pulling the claws on the front of the clip against the mirror so that the latter is pressed against three small projections on the front of the bracket, opposite the claws. This method of holding the mirror at three points that are supported on the other side of the mirror ensures that the glass is not distorted by asymmetrical strains and was first described, if not invented, by John Dolland in the mid 18th century.

Figure 10 : Front of index mirror clip.

Figure 11 : Rear of index mirror clip.

Before a sextant or octant can be used, the index mirror has to be made perpendicular to the plane of the arc. There are several ways of doing this: by tilting the mirror in its mount as in most modern sextants; by making the bracket perpendicular in the first place as in a few high class modern sextants; or by tilting the bracket with its attached mirror. The latter seems to have been the solution favoured by 18th and early 19th century makers. Figure 12 shows how it was done. The mirror bracket is fastened to the index arm by two screws that pass through clearance holes in the bracket into the index arm. A third screw  passes through a tapped hole in  heel of the bracket and its end bears on the index arm. Tightening the screw tilts the bracket and mirror forward and loosening allows them to tilt back. It is a satisfactory method except for the ham-handed, who are liable to tighten the third screw without slackening the fastening screws a little to allow movement. Perhaps there were many ham handed mariners, those “overhandy gentlemen” remarked on by Troughton and quoted by Raper, as the method seems to have died out in the second half of the 19th century.

Figure 12 : Perpendicularity adjustment of index mirror.

The horizon mirror is secured to its base by a similar clip (Figure 13). It has to be possible to bring the horizon mirror perpendicular to the plane of the arc and to bring it parallel to the index mirror when the instrument reads zero. Navigational texts refer to removing side and index error respectively. Again, modern practice is simply to move the mirror in its mount by means of screws bearing on its back, but 18th and early 19th century makers favoured more complex approaches.

Figure 13 : Horizon mirror clip.

The horizon mirror clip holds the mirror against a bracket atop the tilting base (Figure 14). The latter has two nipples that sit in depressions in the rotating sub-base and can be tilted against spring pressure by means of the side error adjusting screw. The rotating base has a tapered shaft that passes through the frame, where it is secured in a square hole in a swing arm (Figure 15). The securing screw allows play in the bearing to be taken up, while the square ensures that no rotational forces are transmitted to the securing screw.

Figure 14 ; Horizon mirror adjustment 1.

The end of the swing arm has a half-nut at its end that engages with a worm that is held captive in a fabricated brass mounting (Figure 15). Rotating the worm against the half-nut moves the end of the swing arm and in turn causes the mirror base to rotate. The swing arm can be locked in position by a locking screw and washer. Figure 16 shows the mechanism assembled.

Figure 15 : Horizon mirror adjustment 2.

Figure 16 : Horizon mirror adjustment 3.

An octant of this quality and period might well have been provide with only a pin hole sight, but as I had a spare 19th century telescope, I elected to make a mounting for it. A thread had to be machined inside a brass ring to suit the telescope (Figure 17) and then it was simply a matter of turning a pillar of the correct height and silver-soldering the ring to it. Figure 18 shows the completed article.

Figure 17 : Screw-cutting telescope ring.

Figure 18 : Completed telescope mounting.

The bag of parts unfortunately did not contain any horizon shades, but as there was a hole for them in the brass mounting plate I could scarcely pretend that none had ever been fitted and I had to set to and make the shades together with their mounting, using traditional methods. I began with the mounts themselves by cutting out three pieces from 3 mm brass plate using a piercing saw having first very carefully marked out the centres. I then clamped all three plates together and drilled through them so that they could all be filed to the same shape and size. Modern laser cutting machinery would make this the work of minutes, but I had to use traditional “cheaters”, discs of hard metal that are clamped either side of the work piece to guide a file. Figure 19 shows the rough sawn parts ready for coarse filing and Figure 20 shows them filed nearly to size along side a fine file.

Figure 19 : Cheaters in place and coarse file.

Figure 20 : Fine filing close to completion.

Figure 21 shows the parts separated, the exterior shape round enough to be held in a lathe chuck for drilling and boring while Figure 22 shows the mounts completed and ready to receive discs of coloured glass which, I confess, only appear to have been swaged into place. Modern acrylic cement unites them to the mounts.

Figure 21: Mounts ready for drilling and boring.

Figure 22 : Shade mounts ready to receive glass.

Examining several mountings suggested that they are fabricated from several parts : a pillar, a base (shown with machining nearly complete in Figure 23) and two discs for cheeks that will receive the tapered cross pin that holds the mounts in place and which are silver soldered to the semi-circular groove machined in the base (Figure 23).

Figure 23 : Base for pillar and cheeks.

Figure 24 shows all the various parts assembled. Once the cheeks were in place, spacing washers and the tapered cross pin could be made to size and then a tapered hole reamed through the sandwich of cheeks, washers and shades. I made  the holes through the washers a little undersize so that when the pin was pulled home by a screw (seen in Figure 24), the washers would not turn on the pin and motion of one shade would not be transferred to its neighbours.

Figure 24 : Shades aseembled in mounting.

Figure 25 shows the structure of the index arm bearing. It is simply two brass or bronze washers let into each side of the frame and secured there by two pins whose heads have been rivetted over. The slightely tapere journal of the index arm fits in the bearing and is adjusted by the familiar screw and washer fitted to a square on the end of the journal (Figure 26).

Figure 25 : Index arm bearing and journal.

Figure 26 : Fitting of index arm bearing.

When restoring an antique instrument it is sometimes hard to decide how far to go. Common sense suggests that the exposed brass parts were probably painted or lacquered black, or sometimes chemically blackened. Sometimes traces of the original finish can be found, but not in this case, so for the time being I have compromised and lacquered only the optical parts. I do not myself feel that doing so devalues the instrument. Its age speaks for itself from its design and structure, so that there is no need for verdigris and thick layers of “antique” dirt. Perhaps readers will let me have their opinions. Figures 27 and 28 show front and back views in its (for the time being…) finished state. All that remains is to make a case.

Figure 27 : Front (left-hand) view.

Figure 28 : Rear (right hand) view.

If you have enjoyed reading this account, I am sure you will enjoy reading my book “The Nautical Sextant“, and your purchasing it will help me to ensure that more sextants are restored to a normal life.

Heath and Company’s best vernier sextant

10 12 2011

Previous posts in this category include:  “A C19 Sextant Restoration” , “Making a Keystone Sextant Case” , “Restoring a C. Plath Drei Kreis Sextant” , “Heath Curve-bar sextant compared with Plath” , “A Drowned Husun Three Circle Sextant”, ”Troughton and Simms Surveying Sextant” , “A Sextant 210 Years On” , “A fine sextant by Filotecnica Salmoiraghi”, “A British Admiralty Vernier Sextant”, “An Hungarian Sextant via Bulgaria” ,  “A Half-size Sextant by Hughes and Son” and “A Fine C Plath Vernier Sextant.”

Clicking on the figures will enlarge them and allow you to see more detail, while clicking on the back arrow (top left) will restore the post.

Several years ago, when I had first started to restore nautical sextants, I bought a Brandis vernier sextant on e-bay. I was dismayed when it arrived to find that it appeared to be loose inside a case that did not  belong to it and, worse, the case was jammed shut, perhaps explaining why the seller had not followed my usual request to put packing around the sextant inside the case. Eventually, I was able to get the case opened without damaging it and found that, improbably, the Brandis sextant had escaped all damage. The rosewood case, bound in brass, belonged to a Heath and Co pillar sextant that, as befits such a high-end product, had been provided with every possible accessory, though the only one present was an early 10 x 20 prismatic monocular. I restored the case and put it aside, against the day, yet to come, when I could acquire the sextant to go with it. However, a few weeks ago I acquired a somewhat later Heath and Co top-end product, an 8 inch (200 mm) radius vernier sextant, equipped with their patent “Hezzanith” endless tangent screw automatic clamp and a set of telescopes that was complete except for a prismatic monocular and the rising piece to go with some of  the other telescopes.  The sextant had its own case, so I still have a spare case for a Heath and Co Pillar sextant, and could be persuaded to part with it if offered the right price…

Heath and Co were granted a patent for their automatic clamp in 1910, so the sextant was no earlier than that, but it also had a Class A inspection certificate from the National Physical Laboratory in Teddington, dated January, 1921, so that its date can be fixed to within a dozen years (see Figure 1)

Figure 1 : Inspection certificate.

The mahogany case (Figure 2) had been protected from much damage by being contained in a stout cowhide satchel. It came as no surprise that most of the stitching had rotted and given way, nor that the leather of the lid hinge had dried out and parted company with the rest of the satchel. I spent a few quiet afternoons restitching the case by hand and gluing strips of leather to repair the broken hinge. Nothing can be done to restore the finish, however, and illustrating the satchel will have to await a post script. While the top of the case had, as is usual, been attached with glue and screws, I was surprised to find that shortcuts had been taken with the bottom: it had been attached by glue and brass panel pins, both of which, after over seventy years, had given way in places. Some of the drawer dovetails at the corners had also given way, so I re-glued everything and replaced the panel pins with brass screws. The “furniture”: brass handle, keyhole escutcheon, piano hinge and hook latches, responded to 600 grit emery paper, followed by metal polish.

Figure 2 : Exterior of case as found.

The details of the hook latches are a little interesting, as they incorporate a safety lock (Figure 3), similar to those found in some early post WW II Tamaya sextant cases. A springy brass sector plate is screwed to the case underneath the hook and when the hook is swung into the closed position, the plate springs up behind the hook, so that it cannot be accidentally un-latched without first depressing the plate.

Figure 3 : Safety hook latches.

A “belt and braces” (belt and suspenders in US) approach was taken to securing the sextant in its case. The pocket and boxwood latch is commonplace, but Heath and Co added the refinement of a brass pillar that  locates the handle in the pocket, and which has a spring-loaded tongue that projects above the handle to secure it. Pressing a button at the rear of the case (Figure 4) withdraws the tongue and releases the handle. The figure also shows that the legs rest upon a springy brass plate that protects the bottom of the case from the legs and also prevents the instrument rattling within its bonds.

Figure 4 : Release knob.

Figure 5 shows the sextant in its case before restoration. At some time, the original black lacquer had been over coated with black paint which had begun to flake off.  Beneath the paint was widespread verdigris that fortunately had progressed no further than a light surface coating. The frame, mirror brackets, shades mountings and legs are all of bronze, while the index arm is a single plate of heavy brass. Catalogues often describe sextants as having brass frames, but brass is an alloy of copper and zinc, without the resistance to corrosion of the copper and tin alloy that is bronze. The silver arc has a radius of about 200 mm (8 inches) and weighs a hefty 1.8 kg (4 lbs) without any telescope mounted. The size of the mirrors is large for the era. The index mirror measures 38 x 57 mm while the horizon mirror is 30 x 40 mm.  The large star telescope “sees” a relatively small area of the reflected image, but has a wide view of the horizon through and around the unsilvered part of the horizon mirror.

Figure 5 : Interior of case as found.

There is a substantial set of telescopes (Figure 6). Of especial note is the 4 x 52 mm Galilean or “star” telescope that, despite its impressively large objective lens, has a measured field of view of only 3.5 degrees. The other star telescope is only a 3 1/2 x 19 mm instrument that is very little different from those in use a hundred years earlier. While lacking the light grasp of the large star telescope, the 4 x 30 inverting telescope has more than twice the field of view to compensate. The 11 x 19 mm inverting scope again belongs to another era and even by 1921 was probably very seldom used. The kit is completed by a zero magnification sighting tube and a pair of eyepiece shades, to which I have added the 10 x 20 mm prismatic monocular with its field of view of about 3 degrees.

Figure 6 : Telescope kit.

 Those telescopes not provided with a forked rising piece have interrrupted screw threads, to allow them to be mounted on the instrument  thread with less than one sixth of a turn. The rising piece for these ‘scopes was missing, so I had to make a new one from scratch. This can be seen in Figure 7 , below, but I have saved the description of how to make it for my next post, under the “Interesting Overhaul Problems” category.  The plain fork fits into a substantial and close-fitting slot in the telescope bracket and is retained there by a nut and a large knurled washer. The washer has a short slot cut in it at 45 degrees to a radius and could presumably have engaged with a button on the telescope fork to act as a crude way of making fine adjustment to the position of the fork, by rotating the washer. However, the large star telescope has no such button and only traces of the button remained on the prismatic monocular, following its adaptation to another instrument.

Figure 7 : Telescope mounting.

The index arm bearing is typical. A slender bearing fits closely in the frame  and a tapered shaft or journal rotates within it. The end of the shaft bears a square that fits inside a square in a washer, while a screw adjusts fit and removes end play. It is worth noting (and repeating) that this screw is used for taking up play only until the faintest trace of resistance to rotation is felt and is then slacked off a little. It must not be screwed up hard as this will very likely cause the bearing to seize, if it does not first twist off the head of the screw. The purpose of the square is to prevent rotation of the shaft being transmitted to the head of the screw. A cover acts as a third leg for the sextant.

Figure 8 : Index arm bearing.

  The mirror mountings are standard, following the pattern described by Peter Dollond in a letter of 1772 addressed to the Astronomer Royal, Nevil Maskelyne. In the letter, Dollond describes how the mirrors are supported at only three points at the back and are retained in their brackets by three spring clips that bear on the front directly over the points. Dollond claimed to have devised the system. Whatever the truth of this, he was granted a patent for it on 22 May 1772 (no. 1017), though one should bear in mind that in the eighteenth century at least, patents were not about priority of invention but gaining a monopoly of use. One of the screws on the index mirror mounting allows it to be brought perpendicular to the plane of the arc and on the horizon mirror, one screw brings it parallel to the plane of the arc while the other one makes it parallel to the index mirror when the sextant reads zero. In this instrument Heath have made a slight refinement to protect the thread of the adjusting screws by providing a counterbore which fits over a boss at the rear of the bracket and which can be filled with a soft rubber washer or with grease (Figure 9). A front view of the clips is shown in Figure 10.

Figure 9 : Horizon mirror mounting.


Figure 10 : Horizon mirror clips.

Figure 11 shows how the horizon shades are mounted and the same arrangement is used for the index shades. The shades are mounted on a tapered shaft and are separated by washers which also have tapered holes in them. When the shaft is inserted into the bracket and through the sandwich of shades and washers, it is prevented from turning by a pin that passes through its head into the bracket. As the adjusting screw is tightened, the washers and shades are forced further up the taper, thus increasing the friction. There is enough friction between the washers and the shafts to prevent them from turning, so that rotational forces from moving one shade are not transmitted to the next. Unusually, in addition to the four index shades, there is an astigmatiser. This is a weak primatic lens that draws out the image of a star into a fine line. In some circumstances, this can make it a little easier to bring a star down to the horizon and, if correctly mounted, can indicated whether the frame of the istrument is tilted relative to the horizon. However, its main use was probably when employing an artificial horizon, when the line of the reflected image would be made to bisect the round direct image of the star, or the image of the bubble when using  a bubble artificial horizon. The latter had only recently been invented at the time this sextant was made.

Figure 11 : Horizon shades

Cheaper vernier sextants generally simply mounted the magnifier at approximately the correct viewing angle and focussing was carried out by sliding the magnifier up or down in a sleeve at the end of a swing arm centred about one third of the way up the index arm. Heath’s rather elaborate and delicate swing arm carries trunnion bearings that allow the magnifier to be tilted so that the view through the magnifier can be centred at any point along the vernier scale (Figure 12).

Figure 12 : Scale magnifier.

Figure 13 (below) shows the intact catch fitted to the rear of the index arm expansion on the left and the exploded structure on the right. A swing arm plate carries the bearings for a worm and its shaft and is itself carried on trunnions that run in bearings mounted on the index arm. Click on the photo to see an enlarged view. These bearings also double as keepers that prevent the index arm from lifting off the front of the limb. Close inspection of the right hand side of the illustration will show that these keeper-bearings have bosses that fit into bushes within holes on the index arm. The holes in the bushes are eccentric, so that the position of the bearings of the swing arm plate can be adjusted to remove end float of the plate and to bring the worm into correct engagement with the rack. End float of the worm itself is removed by adjustment of a cone-ended screw that engages with a centre in the end of the worm and that is locked by a knurled lock nut

Figure 13 : Release catch mechanism.

When the release catch button is squeezed, the worm and its mounting is swung out of engagement with the rack so that the index arm can be placed rapidly and approximately in position, after which the worm is used to make fine adjustments. Because it is so short, the pitch of the worm is rather difficult to measure, but it appears to be of around 0.8 mm (32 t.p.i.). After receiving their patent (No 17,840 of 10th March, 1910), it seems that it took Heath and Co another fifteen years or so to make the obvious next step and make the pitch such that one turn of the worm moved the index arm through half a degree, or 1 degree of sextant reading. This probably had more to do with conservatism than with technique, as the rise of the motor industry around the turn of the century had stimulated the production of  accurate gear hobbing machines. There is some evidence that C Plath of Hamburg had produced a very similar release catch mechanism somewhat before Heath did so, and they certainly continued to do so into the 1920s, until their micrometer sextant gained popularity and ousted the vernier instrument. Neither firm could of course claim priority for the worm and rack which was certainly known to 1st century Greeks. Heath’s claim was for the method of mounting  a “spring urged plate upon which the traversing screw is mounted…in such manner that the traversing screw can be taken and held out of gear...”  Had Plath patented their micrometer sextant in 1907, when they first advertised it, this is probably precisely the claim they would have made. Figure 14 shows the restored instrument in its case. If you have enjoyed reading this post, you may enjoy reading my book “The Nautical Sextant”, available through good booksellers, from Amazon and direct from the pjoint publishers, Paradise Cay Publications and Celestaire.

Figure 14 : Restoration completed.